

Machine Learning-Driven Pangenome Pipeline for Predicting *E. coli* Drug Resistance

CoDE Lab, San Francisco State University, Departments of Biology & Computer Science

Abdoulfatah Abdillahi

Estefanos Kebebew

Myco Torres

Juvenal F Barajas

ibarajas 8 mail sísu ec

Pleuni Pennings, PhD

Why We Care About E. coli

- Common and Widespread Pathogen: Antibiotic resistance in *E. coli is* a major concern because it is the most common Gram-negative pathogen affecting humans.
- Increasing Multidrug Resistance: Rising numbers of E. coli strains are becoming resistant to multiple antibiotics, which significantly limits treatment options and contributes to higher morbidity and mortality rates.
- Limitations of Traditional Testing: Current drug resistance tests for E. coli are time-consuming, have low throughput, and are limited to bacteria that can be easily cultivated in labs.
- Current methods: Some studies train predictive models using only gene presence/absence or SNP data. We propose a novel approach that combines both within a pangenome framework to enhance accuracy and improve the generalizability of drug resistance predictions.

Prepare Pangenome Reference

Mills Gladstone Kalloneen
Dataset Dataset

(2000 Samples)(3000 Samples)(2000 Samples)

Pangenome Pipeline / Preprocessing

Feature Extraction

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene n
ERR4 03581 2		GGT A	ACC T	ACT G	TCC A	NNN
ERR4 03581 3	ACG	CTA A	ACC T	ACT G	TCC A	ACT N
ERR4 03581 4	NNN	CTA A	ACC T	ACT G	TAC A	ACT N
ERR4 03581 5	TCGT	CTAC	GGT	ACT G	ACT G	NNN
EER n	ACG	CTAC	GGC	ACT G	NNN	NNN
Gene Presence Gene Absence						
	This table represents our feature extraction process, where we identify SNPs, gene presence, and					

gene absence across various genes

for each accession ID.

Machine Learning

Future Direction using NLP

References

- Moradigaravand, D., Palm, M., Farewell, A.,
 Mustonen, V., Warringer, J., & Parts, L. (2018).
 Prediction of antibiotic resistance in Escherichia coli
 from large-scale pan-genome data. PLoS
 Computational Biology, 14(12), e1006258.
 https://doi.org/10.1371/journal.pcbi.1006258
- Yoo, H. (n.d.). *Predicting anti-microbial resistance using large language models*. ar5iv. https://ar5iv.labs.arxiv.org/html/2401.00642

Acknowledgement

Funding:

- Student Enrichment Opportunities
- NIH SFSU/UCSF MS Brige to Doctorate
- Bristol Myers Squibb
- Kenfong Award

