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Why We Care About E. coli

● Common and Widespread Pathogen: Antibiotic resistance in 
E. coli is a major concern because it is the most common 
Gram-negative pathogen affecting humans.

● Increasing Multidrug Resistance: Rising numbers of E. coli 
strains are becoming resistant to multiple antibiotics, which 
significantly limits treatment options and contributes to higher 
morbidity and mortality rates.

● Limitations of Traditional Testing: Current drug resistance 
tests for E. coli are time-consuming, have low throughput, and 
are limited to bacteria that can be easily cultivated in labs. 

● Current methods: Some studies train predictive models using 
only gene presence/absence or SNP data. We propose a novel 
approach that combines both within a pangenome framework to 
enhance accuracy and improve the generalizability of drug 
resistance predictions.
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Future Direction using NLP

This table represents our feature 
extraction process, where we 
identify SNPs, gene presence, and 
gene absence across various genes 
for each accession ID. 
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